QUEST w Loʊέ Queens K[in]G ℜ8leadℜ |\/\/|g
∫ƒ¹²’²¾PARTNERSHIPSpt‘BH’
g¹MKTg&∧Vsense’×5g w/5
³kin³³READ|::|::||||ACTED
READACTED –³⊕⊗³⊕⊗
PArtBy Philastein )( Geoff Wexler³³s×¥
³³
Trump DOJ seized data from House Democrats in leaks MELANIA ∏2³∝×x<χ>¥
<<♣>>#MEDIA.MA≡³³K<,>♦<,>⇔Σ
> Γ/®@©(è)©@® ℜe¯\_(ツ)_/¯ DC | CLT| NY :PA
NOW HIRING Questions| PRocess|Dev|Train|eM|^^^^||LLC:
1Lead1 – We talk and operate as 1unit gUNICODE #TIME
2Toda\Y 2/raba – We thank, we #r #espect #2gether #ORDER
3ATTACK GR8s #CUBAN #MARK #CRISES #MISS? #ÞKENNEDIES¬
The PHRASE Switch Hitter, actually derives from Switz/SWISS and that’s more than a neural stance taken on’eM. FACT we have decided to champion the unpopular stance on many varied topics in and outside lega||ines. We feel there are much more important things truley Above the Law, and their traffick. People and misinformation aside, #HYRULEZ > #LEGAL + #HI101 #XXSEARCH OPTIMIZATION While owning your own category .SPACE UP COMING SPECIAL ON DAS ßOOT INTRODUCING THE PINK SLIPPurr
1-4BETA > ALPHA+1 $GOOG #ALPHABET $GOOGL #L4C #PLANTOURS #NUTzzZ
2 – PAC1 =#1Luv<3 #STARFISH > #SHELLFISH #LIONSHARE #MANE #MGMABELLION
3 – ReCAPTCHA|SE |Bank’ñJD SUPRA PART III || SEE PART II:: WHOis ¹FEED$P
OT II ∝¤µ FIN TECHNOLOGY LAWYERS
4 – MOM-WellsFARGO1)(LEARNING Splinter Cell Master Skills with VI Sense’ Splinter (pic way above)
5 – Blending elements in flui=VVhats LEV∃L 10100 SunTrust Truist BB&T ÐEtherium Deb8 Binary C0Ð∃1)
6 PENN¹ #LGBT R û Q<–uestioning ME @PESCI #TRY’ME #RIVER #PHOENIX<>SµNS #SPORTSLAW
BlackSunRayzÐRESS eduRESTqrstuvvwVV
7 MEMORIALIZA’eM µsic + ¹↑PREzZµ .art auto pilot pioneer mgm goldmeyrrrr gFather moWILLIAMS
∑1∞ #PHOENIX #SUN#CHOSEN∠Nose HIST101VIINDEX<bat.meme pubCAM styl influenced by ZION
∴4G≡DubYA≡G4∴
™
FREE².Geo∫frey
gℜr
#FINײ³TECH1
- §|¹
Part||nerS|HipÞPÞ§
- §|2³SONG2BIDEN4X<><><
- §|3 PO
Eñs4Presszx§
- §|4 NFT.artwock¥×Y
Don Wimble once said, “If you rescue 1 man you shall be crowned king1 and given your LEGACY“#BOB(s) #HOPE #HEROES HASH/eM∑
Investigating8©456623 Subject: Concerns regarding Wells Fargo claim number 2020112000183
SOMJEEN PHENGCHAUYAPHUM #FBI #FTC #WELLS #FARGO #DOUBLEDOSE #MODERÑA $T #MABELL#©®0M(e) #MICROSOFT #WIMBELDON #HP #PENN1 #5OPEN4 #BLUE #DEVi| #SALES/mkt #G #Chewzme #MITZVJMINTS #FUELGR* #F*STAR #G$MON #GNuS #IC3 #IC4 #TARHEELLC||™
<next>FADEN|M|J-23 TRIPLE׳∞ BALLERz¤¬LAVAℜ #MINTED #BUZZ #MINTZ #LAW²³/r
AdmissionsPLUS+ If there were a war today I probably would be a draft dodger because that is the team I root for in the Maj #MAGIC #OWNERSHIP #IDEAS #HUMBLENESS #BUILDS #TRUST #PLUS #CREDIBILITY #ENTLAW #SPORTSLAW #MUSIC APP MARK CUBAn MISS Cri
Clev/rtypet|O|eTHETRUMPStrumpets/Degavel TheY/re GRRRRRrrrrrrr/8 ft. Tiger/ & ToeKnees³-music8 CALLIN’ IT OFFITK<∝ZION
ℜɘ£8 ::DIVLAW//ΓÉ
L8 {inside} OUR FLASHION BLOG ALL ABOUT THE TIGER∃MIR
ℜ01
ROArr/rrÞ/lickex×y
<===========

|||TIGERFACE ( )DIVLAW LLC|||FLOSSñ|||³³³³
∞Main citations³

∠Changes>…4J0Y4H <insert FREE MeD, researchN’ FREY, GE0F #HOPE TO-chi#LIFE #HLIFE #1HIGH1
∏¾Quintessentially Important::
@LGBTQuadraticƒ=USAfunction @GÖOG∜NIKE#~SIMONEπtLAWΠ ßILES PEACE
q-exponential
In combinatorial mathematics, a q-exponential is a q-analog of the exponential function, namely the eigenfunction of a q-derivative. There are many q-derivatives, for example, the classical q-derivative, the Askey-Wilson operator, etc. Therefore, unlike the classical exponentials, q-exponentials are not unique. For example, {\displaystyle e_{q}(z)} is the q-exponential corresponding to the classical q-derivative while {\displaystyle {\mathcal {E}}_{q}(z)}
are eigenfunctions of the Askey-Wilson operators.
Contents
Definition[edit]
The q-exponential {\displaystyle e_{q}(z)} is defined as
- {\displaystyle e_{q}(z)=\sum _{n=0}^{\infty }{\frac {z^{n}}{[n]_{q}!}}=\sum _{n=0}^{\infty }{\frac {z^{n}(1-q)^{n}}{(q;q)_{n}}}=\sum _{n=0}^{\infty }z^{n}{\frac {(1-q)^{n}}{(1-q^{n})(1-q^{n-1})\cdots (1-q)}}}
where {\displaystyle [n]!_{q}} is the q-factorial and
- {\displaystyle (q;q)_{n}=(1-q^{n})(1-q^{n-1})\cdots (1-q)}
is the q-Pochhammer symbol. That this is the q-analog of the exponential follows from the property
- {\displaystyle \left({\frac {d}{dz}}\right)_{q}e_{q}(z)=e_{q}(z)}
where the derivative on the left is the q-derivative. The above is easily verified by considering the q-derivative of the monomial
- {\displaystyle \left({\frac {d}{dz}}\right)_{q}z^{n}=z^{n-1}{\frac {1-q^{n}}{1-q}}=[n]_{q}z^{n-1}.}
Here, {\displaystyle [n]_{q}} is the q-bracket. For other definitions of the q-exponential function, see Exton (1983), Ismail & Zhang (1994), Suslov (2003) and Cieslinski (2011).
Properties[edit]
For real {\displaystyle q>1}, the function {\displaystyle e_{q}(z)}
is an entire function of {\displaystyle z}
. For {\displaystyle q<1}
, {\displaystyle e_{q}(z)}
is regular in the disk {\displaystyle |z|<1/(1-q)}
.
Note the inverse, {\displaystyle ~e_{q}(z)~e_{1/q}(-z)=1}.
Addition Formula[edit]
If {\displaystyle xy=qyx}, {\displaystyle e_{q}(x)e_{q}(y)=e_{q}(x+y)}
holds.
Relations[edit]
For {\displaystyle -1<q<1}, a function that is closely related is {\displaystyle E_{q}(z).}
It is a special case of the basic hypergeometric series,
- {\displaystyle E_{q}(z)=\;_{1}\phi _{1}\left({\scriptstyle {0 \atop 0}}\,;\,z\right)=\sum _{n=0}^{\infty }{\frac {q^{\binom {n}{2}}(-z)^{n}}{(q;q)_{n}}}=\prod _{n=0}^{\infty }(1-q^{n}z)=(z;q)_{\infty }.}
Clearly,
- {\displaystyle \lim _{q\to 1}E_{q}\left(z(1-q)\right)=\lim _{q\to 1}\sum _{n=0}^{\infty }{\frac {q^{\binom {n}{2}}(1-q)^{n}}{(q;q)_{n}}}(-z)^{n}=e^{-z}.~}
Relation with Dilogarithm[edit]
{\displaystyle e_{q}(x)} has the following infinite product representation:
- {\displaystyle e_{q}(x)=\left(\prod _{k=0}^{\infty }(1-q^{k}(1-q)x)\right)^{-1}.}
On the other hand, {\displaystyle \log(1-x)=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}} holds. When {\displaystyle |q|<1}
,
- {\displaystyle \log e_{q}(x)=-\sum _{k=0}^{\infty }\log(1-q^{k}(1-q)x)=\sum _{k=0}^{\infty }\sum _{n=1}^{\infty }{\frac {(q^{k}(1-q)x)^{n}}{n}}=\sum _{n=1}^{\infty }{\frac {((1-q)x)^{n}}{(1-q^{n})n}}={\frac {1}{1-q}}\sum _{n=1}^{\infty }{\frac {((1-q)x)^{n}}{[n]_{q}n}}.}
By taking the limit {\displaystyle q\to 1},
- {\displaystyle \lim _{q\to 1}(1-q)\log e_{q}(x/(1-q))=\mathrm {Li} _{2}(x),}
where {\displaystyle \mathrm {Li} _{2}(x)} is the dilogarithm.
References[edit]
- Exton, H. (1983), q-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538
- Gasper, G. & Rahman, M. (2004), Basic Hypergeometric Series, Cambridge University Press, ISBN 0521833574
- Ismail, M. E. H. (2005), Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press.
- Ismail, M. E. H. & Zhang, R. (1994), “Diagonalization of certain integral operators,” Adv. Math. 108, 1–33.
- Ismail, M.E.H. Rahman, M. & Zhang, R. (1996), Diagonalization of certain integral operators II, J. Comp. Appl. Math. 68, 163-196.
- Jackson, F. H. (1908), “On q-functions and a certain difference operator”, Transactions of the Royal Society of Edinburgh, 46, 253-281.