You are currently viewing #QueeN'{e.M} Σ#(✾♛‿♛)ilY#

#QueeN'{e.M} Σ#(✾♛‿♛)ilY#

"BH" LLC PRESENTS ™F "THE LANCE"

™∠µ¬™FASHIONLAW‰µ √This blog is simply part II of Thanks “Dog” (spelled
backwards if you didn’t read) PLUS DIVINE/R/rrPART:: ¬#LEGAL#LAW//Rr

LEGL<¬COM ϖπ PART¬ NERSHIPS GOÕGLEℜ¬vIviewS TŸLE

A Càutionary Tail of understanding the KINGPIN ::£E’GAL#

Spider-Man Can't Measure Up to Mayor Wilson Fisk | CBR

 

 

 WEBSITE MARKETING PART VI VI VI ft FRANKS 3000 “T√” TMP[ BATT]LE

QQ³≅=#LAW360#1aHISTORY#A|gore∑ #Rhythm #Balance #SCROLL
ft #FINEART #3333 #369 YOU so #FINE
³Qµ #SPIDERFINGERSµ RHYTH∑

Conditionally, if “content’s K|in|G”, then what’s Queen|M context?♥ – 

Szczerski FADEM Rep. We Are the Champions Painting by Andrzej Szczerski


a|T optics: r/Todo Topics ft TADA w/AppX
³ DAY STARTERS

-State animal farm house re-ad-tax-code.biz #TAXLAW
-Auguste/w/D umas PORSCHE EMPIRE w/ #MAXLAW
-Right[in]gfluence/ godfather/ft/mariobros  #ENTLAW
-Franks2000[TV]|ft/edward/stantonIII| #PATENTLAW
gFather #Arthur #Wimble #DIV #DON ##DOL #OM

Gnrisknotmal[e]war/r/re/n/g/than/g/r/mix/l8reJABBERWCKY

 

|am[k]not content.edu[K08] #Kobe#Black#MaM[ ]a<>∞æ∼∞æ∼∞æ∼∞æ∼∞æ∼∞æ∼<<-><>

Content Vz. Context:

ThankYOU DRip&KAWING<COM
-clariTEAvzCLARi10 #auJEMIMA
Arthur Wimble, Don-Robb Kardash

Content made on Kapwing

HEADHUNT FEATURE IV PART ROYL SPECIAL “Captivating or Capturing Kennedy? FEATURING DJ KANYEAZY EAST re::KANYEAST

          ..... ..
          XXXXX:::XXXXXXXXXXXXX
        XXX:XXXXXXXXXXXXXXXXXXXXXX:
      XXXXX:XXXXXXX:XXXXXXX:XXXXX::
     .::IXX::XXXXXX:XXXX::.:':XXXX::
    ..::::XX:XXXXXX:XXXX:'::':XXXXX::
   ..:::'X:XXXXXXXX':XXXX:XXXXXXXX':.
   ...:X'.'XXXXXXXXX.XXXXXXXXXXXX'XXX:.
  ....:X.:XXXXXXXXXXXXXXXXXXXXXX:'XXXX:
  ...."X.XXXXXXXXXXXXXXXXX"""'' :XXXXXX:
  ...::'"""''''"'""""'''        :XXXXXX:
  ..:.:.....                    .:XXXXX:
  :..::.....                    :'XXXXX:
   Etherum..                      .:XXXXX
    ::''''      HUNT IV          .:XXXXX
    .      ....,,     ......     :XXXXX
  :::   .::"   XXX  ::'   ''":   .XXXX:.
  :.:   :::"MM'""X   .:"MM '.     "X";.:
  ::'     I:..:.:X    ."''.'      .::' :
 ::XI     .    XI                :::  :
   :XX         XI                .::"':
   :X' .:.     /X.              .:::  .
   """....    /XXX.:XX.         ...: .
    ":....    '"""'             ..::.
     ':...                      ...:
      :....  :..:II:II:..:     ...:
      ':....  ::.              ..::
       ':...   '"""""'    .    .:::
         .:...               . ..::::'
         ':....            : ..:::XXL:.
    ...:::X:...         .:::::'  XXXXXXX
.:::XXXXXXX::::::......:::::'   .XXXXXXX
XXXXXXXXXXX:::::::::::::::'    .XXXXXXXX
XXXXXXXXXXX'::::::::::::'   .'.:XXXXXXXX
XXXXXXXXXXX.'::::::::::'  .'   .XXXXXXXX
XXXXXXXXXXX   ':::::::'. ,'   .XXXXXXXXX
XXXXXXXXXXX    ':::::'.;     .XXXXXXXXXX
XXXXXXXXXXX    .'WWWW.      .XXXXXXXXXXX
XXXXXXXXXX.   .'WWWWWW     .XXXXXXXXXXXX
XXXXXXXXXX,   .:WWWW" '    .XXXXXXXXXXXX
XXXXXXXXXX  :  WWW'       XXXXXXXXXXXXXX
XXXXXXXXX' .  WWW'    .XXXXXXXXXXXXXXXXX

http://https://kapwi.ng/c/YBQufDOn http://ancelot/lance/man PART VI on our SERIES re: NAME Imagi’ LIKENESS #LEGL

Thanks MIKE and KANYEAST @GREATFIN STAFFING Along w/ip $ETHERIUM #YOU LEGAL #LAW #ART #KAWING #BILL #KLGATEPlease stay tuned for PART III CALLED THANKS Doµg ft $MSFT# #MICROSOFT# $MICROSOFTt# #MELTS #INDICA #MELINDA DR of SEO PENN1 II RanÐALL@ÐMVVAY PA HARDLINK THE PROFESSOR AND PROD

vs emann2.0

|| ¹Lorem ip Citations || vµ¦™
Galileo @ Geo∫ II KinGPIN I¹“’‰ℵϖ‰ ¦¦√¦∞

 

HI LEVEL MKT vs 1SEO chall.

High Level Marketing (@HighLevelMarket) | Twitter

Lance Bachmann president and Founder of 1SEO.com , We Gauranteed result to  our Client. - YouTube

 

¾∫LAW OF Mathematical βeta ft.
Galileo @ Geo∫ II KinGPIN I |\/\/| |\/\/\/|¼ recursion loop #TIME #LAW #CONTi

Since there’s clearly a discontinuous nature of the square root function in the complex plane, the following laws are not true in general.

  • {\displaystyle {\sqrt {zw}}={\sqrt {z}}{\sqrt {w}}} (counterexample for the principal square root: z = −1 and w = −1) This equality is valid only when {\displaystyle -\pi <\theta _{z}+\theta _{w}\leq \pi }
  • {\displaystyle {\frac {\sqrt {w}}{\sqrt {z}}}={\sqrt {\frac {w}{z}}}} (counterexample for the principal square root: w = 1 and z = −1)This equality is valid only when {\displaystyle -\pi <\theta _{w}-\theta _{z}\leq \pi }
  • {\displaystyle {\sqrt {z^{*}}}=\left({\sqrt {z}}\right)^{*}} (counterexample for the principal square root: z = −1)This equality is valid only when {\displaystyle \theta _{z}\neq \pi }

A similar problem appears with other complex functions with branch cuts, e.g., the complex logarithm and the relations logz + logw = log(zw) or log(z*) = log(z)* which are not true in general.

Wrongly assuming one of these laws underlies several faulty “proofs”, for instance the following one showing that −1 = 1:

{\displaystyle {\begin{aligned}-1&=i\cdot i\\&={\sqrt {-1}}\cdot {\sqrt {-1}}\\&={\sqrt {\left(-1\right)\cdot \left(-1\right)}}\\&={\sqrt {1}}\\&=1\end{aligned}}}

The third equality cannot be justified (see invalid proof). It can be made to hold by changing the meaning of √ so that this no longer represents the principal square root (see above) but selects a branch for the square root that contains {\displaystyle {\sqrt {1}}\cdot {\sqrt {-1}}.} The left-hand side becomes either

{\displaystyle {\sqrt {-1}}\cdot {\sqrt {-1}}=i\cdot i=-1}

if the branch includes +i or

{\displaystyle {\sqrt {-1}}\cdot {\sqrt {-1}}=(-i)\cdot (-i)=-1}

if the branch includes −i, while the right-hand side becomes

{\displaystyle {\sqrt {\left(-1\right)\cdot \left(-1\right)}}={\sqrt {1}}=-1,}

where the last equality, {\displaystyle {\sqrt {1}}=-1,} is a consequence of the choice of branch in the redefinition of √.

Nth roots and polynomial roots

The definition of a square root of {\displaystyle x} as a number {\displaystyle y} such that {\displaystyle y^{2}=x} has been generalized in the following way.

cube root of {\displaystyle x} is a number {\displaystyle y} such that {\displaystyle y^{3}=x}; it is denoted {\displaystyle {\sqrt[{3}]{x}}.}

If n is an integer greater than two, a nth root of {\displaystyle x} is a number {\displaystyle y} such that {\displaystyle y^{n}=x}; it is denoted {\displaystyle {\sqrt[{n}]{x}}.}

Given any polynomial p, a root of p is a number y such that p(y) = 0. For example, the nth roots of x are the roots of the polynomial (in y{\displaystyle y^{n}-x.}

Abel–Ruffini theorem states that, in general, the roots of a polynomial of degree five or higher cannot be expressed in terms of nth roots.

Square roots of matrices and operators

If A is a positive-definite matrix or operator, then there exists precisely one positive definite matrix or operator B with B2 = A; we then define A1/2 = B. In general matrices may have multiple square roots or even an infinitude of them. For example, the 2 × 2 identity matrix has an infinity of square roots,[23] though only one of them is positive definite.

References

External links