"BH" LLC PRESENTS ™F "THE LANCE"
™∠µ¬™FASHIONLAW‰µ √This blog is simply part II of Thanks “Dog” (spelled
backwards if you didn’t read) PLUS DIVINE/R/rrPART:: ¬#LEGAL#LAW//Rr
LEGL<¬COM ϖπ PART¬ NERSHIPS GOÕGLEℜ¬ ∃vIviewS TŸLE
A Càutionary Tail of understanding the KINGPIN ::£E’GAL#
WEBSITE MARKETING PART VI VI VI ft FRANKS 3000 “T√” TMP[ BATT]LE
€QQ³≅=#LAW360#1aHISTORY#A|gore∑ #Rhythm #Balance #SCROLL
ft #FINEART #3333 #369 YOU so #FINE ³Qµ #SPIDERFINGERSµ RHYTH∑
♦Conditionally, if “content’s K|in|G”, then what’s Queen|M context?♥ –
Szczerski FADEM Rep. We Are the Champions Painting by Andrzej Szczerski
a|T optics: r/Todo Topics ft TADA w/AppX³ DAY STARTERS
-State animal farm house re-ad-tax-code.biz #TAXLAW
-Auguste/w/D umas PORSCHE EMPIRE w/ #MAXLAW
-Right[in]gfluence/ godfather/ft/mariobros #ENTLAW
-Franks2000[TV]|ft/edward/stantonIII| #PATENTLAW
gFather #Arthur #Wimble #DIV #DON ##DOL #OM
Gnrisknotmal[e]war/r/re/n/g/than/g/r/mix/l8reJABBERWCKY
|am[k]not content.edu[K08] #Kobe#Black#MaM[ ]a<>∞æ∼∞æ∼∞æ∼∞æ∼∞æ∼∞æ∼<<-><>
Content Vz. Context:
ThankYOU DRip&KAWING<COM
-clariTEAvzCLARi10 #auJEMIMA
Arthur Wimble, Don-Robb Kardash
Content made on Kapwing
HEADHUNT FEATURE IV PART ROYL SPECIAL “Captivating or Capturing Kennedy? FEATURING DJ KANYEAZY EAST re::KANYEAST
..... .. XXXXX:::XXXXXXXXXXXXX XXX:XXXXXXXXXXXXXXXXXXXXXX: XXXXX:XXXXXXX:XXXXXXX:XXXXX:: .::IXX: : XXXXXX: XXXX: :.: ': XXXX: : ..:::: XX: XXXXXX: XXXX: ': : ': XXXXX: : ..::: 'X: XXXXXXXX': XXXX: XXXXXXXX': . ...: X'. 'XXXXXXXXX. XXXXXXXXXXXX'XXX: . ....: X. : XXXXXXXXXXXXXXXXXXXXXX: 'XXXX: ...."X.XXXXXXXXXXXXXXXXX"""'' :XXXXXX: ...::'"""''''"'""""''' :XXXXXX: ..:.:..... .:XXXXX: :..::..... :'XXXXX: Etherum.. .:XXXXX
::'''' HUNT IV .:XXXXX . ....,, ...... :XXXXX ::: .::" XXX ::' ''": .XXXX:. :.: :::"MM'""X .:"MM '. "X";.: ::' I:..:.:X ."''.' .::' : ::XI . XI ::: : :XX XI .::"': :X' .:. /X. .::: . """.... /XXX.:XX. ...: . ":.... '"""' ..::. ':... ...: :.... :..:II:II:..: ...: ':.... ::. ..:: ':... '"""""' . .::: .:... . ..::::' ':.... : ..:::XXL:. ...:::X:... .:::::' XXXXXXX .:::XXXXXXX::::::......:::::' .XXXXXXX XXXXXXXXXXX:::::::::::::::' .XXXXXXXX XXXXXXXXXXX'::::::::::::' .'.:XXXXXXXX XXXXXXXXXXX.'::::::::::' .' .XXXXXXXX XXXXXXXXXXX ':::::::'. ,' .XXXXXXXXX XXXXXXXXXXX ':::::'.; .XXXXXXXXXX XXXXXXXXXXX .'WWWW. .XXXXXXXXXXX XXXXXXXXXX. .'WWWWWW .XXXXXXXXXXXX XXXXXXXXXX, .:WWWW" ' .XXXXXXXXXXXX XXXXXXXXXX : WWW' XXXXXXXXXXXXXX XXXXXXXXX' . WWW' .XXXXXXXXXXXXXXXXX
http://https://kapwi.ng/c/YBQufDOn http://ancelot/lance/man PART VI on our SERIES re: NAME Imagi’ LIKENESS #LEGL
Thanks MIKE and KANYEAST @GREATFIN STAFFING Along w/ip $ETHERIUM #YOU LEGAL #LAW #ART #KAWING #BILL #KLGATEPlease stay tuned for PART III CALLED THANKS Doµg ft $MSFT# #MICROSOFT# $MICRO™SOFTt# #MELTS #INDICA #MELINDA DR of SEO PENN1 II RanÐALL@ÐMVVAY PA HARDLINK THE PROFESSOR AND PROD
vs emann2.0
|| ¹Lorem ip Citations || vµ¦™
Galileo @ Geo∫ II KinGPIN I¹“’‰ℵϖ‰ ¦¦√¦∞
HI LEVEL MKT vs 1SEO chall.
¾∫LAW OF Mathematical βeta ft.
Galileo @ Geo∫ II KinGPIN I |\/\/| |\/\/\/|¼ recursion loop #TIME #LAW #CONTi
Since there’s clearly a discontinuous nature of the square root function in the complex plane, the following laws are not true in general.
- {\displaystyle {\sqrt {zw}}={\sqrt {z}}{\sqrt {w}}}
(counterexample for the principal square root: z = −1 and w = −1) This equality is valid only when {\displaystyle -\pi <\theta _{z}+\theta _{w}\leq \pi }
- {\displaystyle {\frac {\sqrt {w}}{\sqrt {z}}}={\sqrt {\frac {w}{z}}}}
(counterexample for the principal square root: w = 1 and z = −1)This equality is valid only when {\displaystyle -\pi <\theta _{w}-\theta _{z}\leq \pi }
- {\displaystyle {\sqrt {z^{*}}}=\left({\sqrt {z}}\right)^{*}}
(counterexample for the principal square root: z = −1)This equality is valid only when {\displaystyle \theta _{z}\neq \pi }
A similar problem appears with other complex functions with branch cuts, e.g., the complex logarithm and the relations logz + logw = log(zw) or log(z*) = log(z)* which are not true in general.
Wrongly assuming one of these laws underlies several faulty “proofs”, for instance the following one showing that −1 = 1:
- {\displaystyle {\begin{aligned}-1&=i\cdot i\\&={\sqrt {-1}}\cdot {\sqrt {-1}}\\&={\sqrt {\left(-1\right)\cdot \left(-1\right)}}\\&={\sqrt {1}}\\&=1\end{aligned}}}
The third equality cannot be justified (see invalid proof). It can be made to hold by changing the meaning of √ so that this no longer represents the principal square root (see above) but selects a branch for the square root that contains {\displaystyle {\sqrt {1}}\cdot {\sqrt {-1}}.} The left-hand side becomes either
- {\displaystyle {\sqrt {-1}}\cdot {\sqrt {-1}}=i\cdot i=-1}
if the branch includes +i or
- {\displaystyle {\sqrt {-1}}\cdot {\sqrt {-1}}=(-i)\cdot (-i)=-1}
if the branch includes −i, while the right-hand side becomes
- {\displaystyle {\sqrt {\left(-1\right)\cdot \left(-1\right)}}={\sqrt {1}}=-1,}
where the last equality, {\displaystyle {\sqrt {1}}=-1,} is a consequence of the choice of branch in the redefinition of √.
Nth roots and polynomial roots
The definition of a square root of {\displaystyle x} as a number {\displaystyle y}
such that {\displaystyle y^{2}=x}
has been generalized in the following way.
A cube root of {\displaystyle x} is a number {\displaystyle y}
such that {\displaystyle y^{3}=x}
; it is denoted {\displaystyle {\sqrt[{3}]{x}}.}
If n is an integer greater than two, a nth root of {\displaystyle x} is a number {\displaystyle y}
such that {\displaystyle y^{n}=x}
; it is denoted {\displaystyle {\sqrt[{n}]{x}}.}
Given any polynomial p, a root of p is a number y such that p(y) = 0. For example, the nth roots of x are the roots of the polynomial (in y) {\displaystyle y^{n}-x.}
Abel–Ruffini theorem states that, in general, the roots of a polynomial of degree five or higher cannot be expressed in terms of nth roots.
Square roots of matrices and operators
If A is a positive-definite matrix or operator, then there exists precisely one positive definite matrix or operator B with B2 = A; we then define A1/2 = B. In general matrices may have multiple square roots or even an infinitude of them. For example, the 2 × 2 identity matrix has an infinity of square roots,[23] though only one of them is positive definite.
References
- Dauben, Joseph W. (2007). “Chinese Mathematics I”. In Katz, Victor J. (ed.). The Mathematics of Egypt, Mesopotamia, China, India, and Islam. Princeton: Princeton University Press. ISBN 978-0-691-11485-9.
- Gel’fand, Izrael M.; Shen, Alexander (1993). Algebra (3rd ed.). Birkhäuser. p. 120. ISBN 0-8176-3677-3.
- Joseph, George (2000). The Crest of the Peacock. Princeton: Princeton University Press. ISBN 0-691-00659-8.
- Smith, David (1958). History of Mathematics. 2. New York: Dover Publications. ISBN 978-0-486-20430-7.
- Selin, Helaine (2008), Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, Springer, Bibcode:2008ehst.book…..S, ISBN 978-1-4020-4559-2.
External links
![]() |
Wikimedia Commons has media related to Square root. |
- Algorithms, implementations, and more – Paul Hsieh’s square roots webpage
- How to manually find a square root
- AMS Featured Column, Galileo’s Arithmetic by Tony Philips – includes a section on how Galileo found square roots